Projective Normality of Special Scrolls

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normality, Projective Normality and Egz Theorem

In this note, we prove that the projective normality of (P(V )/G,L), the celebrated theorem of Erdös-Ginzburg-Ziv and normality of an affine semigroup are all equivalent, where V is a finite dimensional representation of a finite cyclic group G over C and L is the descent of the line bundle O(1)⊗|G|.

متن کامل

Projective Normality of Abelian Varieties

We show that ample line bundles L on a g-dimensional simple abelian variety A, satisfying h0(A,L) > 2g · g!, give projective normal embeddings, for all g ≥ 1.

متن کامل

Projective Normality of Complete Symmetric Varieties

We prove that in characteristic zero the multiplication of sections of dominant line bundles on a complete symmetric variety X = G/H is a surjective map. As a consequence the cone defined by a complete linear system over X, or over a closed G stable subvariety of X is normal. This gives an affirmative answer to a question raised by Faltings in [7]. A crucial point of the proof is a combinatoria...

متن کامل

On the Projective Normality of Smooth Surfaces of Degree Nine

The projective normality of smooth, linearly normal surfaces of degree 9 in P is studied. All non projectively normal surfaces which are not scrolls over a curve are classified. Results on the projective normality of surface scrolls are also given.

متن کامل

Normality and non-normality of group compactifications in simple projective spaces

If G is a complex simply connected semisimple algebraic group and if λ is a dominant weight, we consider the compactification Xλ ⊂ P (

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2008

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927870701776714